Pre-installed Llama3.1-70B LLM Hosting
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- GPU: Nvidia Quadro RTX A6000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - RTX PRO 6000
- 256GB RAM
- GPU: Nvidia RTX PRO 6000
- Dual 24-Core Platinum 8160
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell
- CUDA Cores: 24,064
- Tensor Cores: 752
- GPU Memory: 96GB GDDR7
- FP32 Performance: 125.10 TFLOPS
Multi-GPU Dedicated Server - 2xA100
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Free NVLink Included
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Pre-installed Llama3.2-Vison-90B LLM Hosting
Enterprise GPU Dedicated Server - RTX PRO 6000
- 256GB RAM
- GPU: Nvidia RTX PRO 6000
- Dual 24-Core Platinum 8160
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell
- CUDA Cores: 24,064
- Tensor Cores: 752
- GPU Memory: 96GB GDDR7
- FP32 Performance: 125.10 TFLOPS
Multi-GPU Dedicated Server- 2xRTX 5090
- 256GB RAM
- GPU: 2 x GeForce RTX 5090
- Dual E5-2699v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell 2.0
- CUDA Cores: 21,760
- Tensor Cores: 680
- GPU Memory: 32 GB GDDR7
- FP32 Performance: 109.7 TFLOPS
Multi-GPU Dedicated Server - 2xA100
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 40GB HBM2
- FP32 Performance: 19.5 TFLOPS
- Free NVLink Included
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Pre-installed Llama4-16x17B LLM Hosting
Enterprise GPU Dedicated Server - RTX PRO 6000
- 256GB RAM
- GPU: Nvidia RTX PRO 6000
- Dual 24-Core Platinum 8160
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell
- CUDA Cores: 24,064
- Tensor Cores: 752
- GPU Memory: 96GB GDDR7
- FP32 Performance: 125.10 TFLOPS
Multi-GPU Dedicated Server - 3xRTX A6000
- 256GB RAM
- GPU: 3 x Quadro RTX A6000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - A100(80GB)
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6912
- Tensor Cores: 432
- GPU Memory: 80GB HBM2e
- FP32 Performance: 19.5 TFLOPS
Enterprise GPU Dedicated Server - H100
- 256GB RAM
- GPU: Nvidia H100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Hopper
- CUDA Cores: 14,592
- Tensor Cores: 456
- GPU Memory: 80GB HBM2e
- FP32 Performance: 183TFLOPS
LLaMA Hosting with Ollama — GPU Recommendation
Model Name | Size (4-bit Quantization) | Recommended GPUs | Tokens/s |
---|---|---|---|
llama3.2:1b | 1.3GB | P1000 < GTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX5060 | 28.09-100.10 |
llama3.2:3b | 2.0GB | P1000 < GTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX5060 | 19.97-90.03 |
llama3:8b | 4.7GB | T1000 < RTX3060 Ti < RTX4060 < RTX5060 < A4000 < V100 | 21.51-84.07 |
llama3.1:8b | 4.9GB | T1000 < RTX3060 Ti < RTX4060 < RTX5060 < A4000 < V100 | 21.51-84.07 |
llama3.2-vision:11b | 7.8GB | A4000 < A5000 < V100 < RTX4090 | 38.46-70.90 |
llama3:70b | 40GB | A40 < A6000 < 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 | 13.15-26.85 |
llama3.3:70b, llama3.1:70b | 43GB | A40 < A6000 < 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 | 13.15-26.85 |
llama3.2-vision:90b | 55GB | 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 | ~12-20 |
llama4:16x17b | 67GB | 2*A100-40gb < A100-80gb < H100 | ~10-18 |
llama3.1:405b | 243GB | 8*A6000 < 4*A100-80gb < 4*H100 | -- |
llama4:128x17b | 245GB | 8*A6000 < 4*A100-80gb < 4*H100 | -- |
LLaMA Hosting with vLLM + Hugging Face — GPU Recommendation
Model Name | Size (16-bit Quantization) | Recommended GPU(s) | Concurrent Requests | Tokens/s |
---|---|---|---|---|
meta-llama/Llama-3.2-1B | 2.1GB | RTX3060 < RTX4060 < T1000 < A4000 < V100 | 50-300 | ~1000+ |
meta-llama/Llama-3.2-3B-Instruct | 6.2GB | A4000 < A5000 < V100 < RTX4090 | 50-300 | 1375-7214.10 |
deepseek-ai/DeepSeek-R1-Distill-Llama-8B meta-llama/Llama-3.1-8B-Instruct | 16.1GB | A5000 < A6000 < RTX4090 | 50-300 | 1514.34-2699.72 |
deepseek-ai/DeepSeek-R1-Distill-Llama-70B | 132GB | 4*A100-40gb, 2*A100-80gb, 2*H100 | 50-300 | ~345.12-1030.51 |
meta-llama/Llama-3.3-70B-Instruct meta-llama/Llama-3.1-70B meta-llama/Meta-Llama-3-70B-Instruct | 132GB | 4*A100-40gb, 2*A100-80gb, 2*H100 | 50 | ~295.52-990.61 |
- Recommended GPUs: From left to right, performance from low to high
- Tokens/s: from benchmark data.
What is Llama Hosting?
LLaMA Hosting is an infrastructure stack for running LLaMA models for inference or fine-tuning. It allows users to deploy Meta's LLaMA (Large Language Model Meta AI) models on infrastructure, run services or fine-tune them, typically through powerful GPU servers or cloud-based inference services.
✅ Self-hosting (local or dedicated GPU): Deployed on servers with GPUs such as A100, 4090, H100, etc., Supports inference engines: vLLM, TGI, Ollama, llama.cpp, full control of models, caching, scaling
✅ LLaMA as a service (API-based): No infrastructure setup required, suitable for quick experiments or low inference load applications
How Does Pre-Installed LLaMA Hosting Work?
1. High-End GPU Server
Prepare a powerful NVIDIA GPU, install Ubuntu 24.04, and pre-configure CUDA, cuDNN, and PyTorch.
2. Model Installation
The Ollama hosting platform is pre-downloaded, and LLaMA 7B, 13B, and 70B 4-bit quantized checkpoints are already placed on fast NVMe storage for memory-efficient inference.
3. Open WebUI Integration
Once the Open WebUI is installed and linked to the model, your dashboard displays the URL and port; open it in any browser to start chatting with LLaMA—no command line required. Built-in authentication allows multiple team members to log in securely.
4. Developer and CLI Access
SSH/Root Login: Full root privileges remain available for advanced tasks such as fine-tuning, installing additional frameworks, or automating deployments. Models can be called programmatically via REST or Python libraries (Transformers, vLLM, etc.).
Detail Display: Open WebUI Integration
Detail Display: Open WebUI Integration
LLM Benchmark Results for LLaMA 1B/3B/8B/70B Hosting
vLLM Benchmark for LLaMA
How to Deploy Llama LLMs with Ollama/vLLM
Install and Run Meta LLaMA Locally with Ollama >
Install and Run Meta LLaMA Locally with vLLM v1 >
What Does Meta LLaMA Hosting Stack Include?
Hardware Stack
✅ GPU(s): High-memory GPUs (e.g. A100 80GB, H100, RTX 4090, 5090) for fast inference
✅ CPU & RAM: Sufficient CPU cores and RAM to support preprocessing, batching, and runtime
✅ Storage (SSD): Fast NVMe SSDs for loading large model weights (10–200GB+)
✅ Networking: High bandwidth and low-latency for serving APIs or inference endpoints
Software Stack
✅ Model Weights: Meta LLaMA 2/3/4 models from Hugging Face or Meta
✅ Inference Engine: vLLM, TGI (Text Generation Inference), TensorRT-LLM, Ollama, llama.cpp
✅ Quantization Support: GGML / GPTQ / AWQ for int4 or int8 model compression
✅ Serving Framework: FastAPI, Triton Inference Server, REST/gRPC API wrappers
✅ Environment Tools: Docker, Conda/venv, CUDA/cuDNN, PyTorch (or TensorRT runtime)
✅ Monitoring / Scaling: Prometheus, Grafana, Kubernetes, autoscaling (for cloud-based hosting)