Choose The Best GPUs for Stable Diffusion Service Hosting
Advanced GPU Dedicated Server - RTX 3060 Ti
- 128GB RAM
- GPU: GeForce RTX 3060 Ti
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 4864
- Tensor Cores: 152
- GPU Memory: 8GB GDDR6
- FP32 Performance: 16.2 TFLOPS
Basic GPU Dedicated Server - RTX 5060
- 64GB RAM
- GPU: Nvidia GeForce RTX 5060
- 24-Core Platinum 8160
- 120GB SSD + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell 2.0
- CUDA Cores: 4608
- Tensor Cores: 144
- GPU Memory: 8GB GDDR7
- FP32 Performance: 23.22 TFLOPS
Advanced GPU Dedicated Server - A4000
- 128GB RAM
- GPU: Nvidia Quadro RTX A4000
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 6144
- Tensor Cores: 192
- GPU Memory: 16GB GDDR6
- FP32 Performance: 19.2 TFLOPS
Advanced GPU Dedicated Server - A5000
- 128GB RAM
- GPU: Nvidia Quadro RTX A5000
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 8192
- Tensor Cores: 256
- GPU Memory: 24GB GDDR6
- FP32 Performance: 27.8 TFLOPS
Enterprise GPU Dedicated Server - RTX A6000
- 256GB RAM
- GPU: Nvidia Quadro RTX A6000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 38.71 TFLOPS
Enterprise GPU Dedicated Server - A40
- 256GB RAM
- GPU: Nvidia A40
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ampere
- CUDA Cores: 10,752
- Tensor Cores: 336
- GPU Memory: 48GB GDDR6
- FP32 Performance: 37.48 TFLOPS
Enterprise GPU Dedicated Server - RTX 4090
- 256GB RAM
- GPU: GeForce RTX 4090
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Ada Lovelace
- CUDA Cores: 16,384
- Tensor Cores: 512
- GPU Memory: 24 GB GDDR6X
- FP32 Performance: 82.6 TFLOPS
Enterprise GPU Dedicated Server - RTX 5090
- 256GB RAM
- GPU: GeForce RTX 5090
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
- Single GPU Specifications:
- Microarchitecture: Blackwell 2.0
- CUDA Cores: 21,760
- Tensor Cores: 680
- GPU Memory: 32 GB GDDR7
- FP32 Performance: 109.7 TFLOPS
Stable Diffusion Model Hosting Compatibility Matrix
| Model Name | Size (fp16) | Recommended GPU | Figure/sec | LoRA Support | ControlNet Support | Recommended UI | Suit for Refiner? | Additional components required | License Agreement |
|---|---|---|---|---|---|---|---|---|---|
| stabilityai/stable-diffusion-v1-4 | ~4.27GB | RTX3060/5060 | 1.5-2 | ✅ | ✅(needs expansion) | AUTOMATIC1111 | ❌ | none | CreativeML OpenRAIL-M |
| stabilityai/stable-diffusion-v1-5 | ~4.27GB | RTX3060/5060 | 1.8-2.2 | ✅ | ✅ | AUTOMATIC1111 | ❌ | none | CreativeML OpenRAIL-M |
| stabilityai/stable-diffusion-xl-base-1.0 | ~6.76GB | A4000/A5000 | 1.2-1.5 | ✅ | ✅ (SDXL version required) | ComfyUI | ✅ | none | CreativeML OpenRAIL++-M |
| stabilityai/stable-diffusion-xl-refiner-1.0 | ~6.74GB | A4000/A5000 | 0.8-1.1 | ✅ | ❌ | ComfyUI | ✅(As a Refiner) | none | CreativeML OpenRAIL++-M |
| stabilityai/stable-audio-open-1.0 | ~7.6GB | A4000/A5000 | - | ❌ | ❌ | Web UI | ❌ | FFmpeg, TTS preprocessing | Non-commercial RAIL |
| stabilityai/stable-video-diffusion-img2vid-xt | ~8GB | A4000/A5000 | Depends on the frame rate | ❌ | ❌ | Web UI | ❌ | FFmpeg | Non-commercial RAIL |
| stabilityai/stable-diffusion-2 | ~5.2GB | RTX 3060 / 5060 | 1.6-2.0 | ✅ | ✅ | AUTOMATIC1111 | ❌ | none | CreativeML OpenRAIL-M |
| stabilityai/stable-diffusion-3-medium | ~10GB | RTX4090 / 5090 | 1.0-1.5 | ✅ | Partial support | ComfyUI | ✅ | none | Not open source, requires API license |
| stabilityai/stable-diffusion-3.5-large | ~20GB | A100-40GB / RTX5090 | 0.5-0.9 | unknown | unknown | Web UI / API | ✅ (Need to combine with Refiner) | unknown | API-only license |
| stabilityai/stable-diffusion-3.5-large-turbo | ~20GB | A100-40GB / RTX5090 | >2.0 | unknown | unknown | Web UI / API | ✅ (Need to combine with Refiner) | unknown | API-only license |
What is Stable Diffusion Hosting Service?
Stable Diffusion Hosting Service is to running Stable Diffusion models on dedicated servers or cloud-based GPU infrastructure to generate AI-generated content such as images, audio, or video. Instead of relying on third-party APIs, users can self-host these models using tools like ComfyUI or AUTOMATIC1111, allowing greater control, customization, and privacy. Hosting solutions are tailored to meet the performance needs of various models—ranging from lightweight versions like SD 1.5 to advanced ones like SDXL and SD 3.5—ensuring compatibility with features such as LoRA fine-tuning, ControlNet, and multi-stage rendering with Refiner models.
Stable Diffusion Hosting is ideal for artists, developers, businesses, and researchers who require high-performance, cost-effective, and scalable local or remote generation workflows.
Features of Stable Diffusion Service
High Performance & Scalability
Data Privacy & Offline Capability
Modular UI Support (ComfyUI / A1111)
Why SD Hosting Needs a Specialized Hardware + Software Stack
High GPU Requirements for Real-Time Image Generation
Complex Software Dependencies
Interactive Interfaces with GPU-Driven Backends
Heavy Storage and Bandwidth Demands
How to Start SD Hosting with GPU Server
Self-hosted Stable Diffusion vs. Stable Diffusion as a Service
| Feature | 🖥️ Self-hosted Stable Diffusion | ☁️ Stable Diffusion as a Service (SDaaS) |
|---|---|---|
| Setup & Maintenance | Requires manual setup (GPU, drivers, PyTorch, Web UI, models) and ongoing updates | No setup needed — instantly usable via web/app/API |
| Hardware Cost | High upfront cost (GPU server or local RTX 30/40 series) | Pay-as-you-go or subscription-based |
| Customization | Full control: install any model, plugin (e.g., LoRA, ControlNet, A1111 mods) | Limited to features provided by the service |
| Performance | Best performance if running on high-end hardware | May be limited by shared resources or pricing tier |
| Privacy & Security | 100% local — no image/text data leaves your machine or server | Data passes through third-party servers (risk of leakage) |
| Scaling | Requires your own GPU cluster or cloud setup | Easy to scale — no need to manage infrastructure |
| Internet Requirement | Can run offline once set up | Requires internet connection |
| Technical Skill Required | Medium to High — need Linux/GPU/Python experience | None — beginner-friendly via browser or API |
FAQs: Stable Diffusion Hosting with ComfyUI or Automatic1111
What’s the difference between ComfyUI and AUTOMATIC1111 for Stable Diffusion?
ComfyUI is a node-based workflow engine, better suited for advanced pipelines, fine-grained control, multi-model setups, and automation.